Indian Statistical Institute Second Semester Examination 2004-2005 M.Math II Year Fourier Analysis

Time: 3 hrs

Date: 11-05-2005

[20]

[15]

Answer as many questions as you can. The maximum you can score is 105. Marks are indicated in the brackets. You may use your class-room notes in the exam. However you cannot use textbooks.

- 1. Find the Fourier series of the function defined by: f(x) = 0 if $\frac{\pi}{2} \le |x| \le \pi$, f(x) = 0 if x is rational and $|x| \le \frac{\pi}{2}$, f(x) = 1 if x is irrational and $|x| \le \frac{\pi}{2}$, and repeated as a 2π periodic function. [10]
- 2. The Fourier coefficients of a 2π -periodic function f are given by:

$$\hat{f}(n) = ne^{-n^2}.$$

Prove that the Fourier series converges uniformly and absolutely to f. Find a *reasonable* value of N such that

$$\sup_{x \in I\!\!R} |S_N^f(x) - f(x)| \le \frac{1}{100}.$$

(I don't want an absurd answer like $N = 10^5$!) Justify your answer.

- 3. Let f be a non-trivial L^1 -function on $I\!\!R$. Let $x_N = \sum_{n=2}^N \frac{1}{n(\log n)^2}$. If $\hat{f}(x_N) = 0, N = 2, 3, 4...$ prove that f cannot be compactly supported. [15]
- 4. Let f be defined on the real line by: $f(x) = x^2$ if $|x| \le 1$, and f(x) = 0 otherwise. Compute the Fourier transform of f. [10]
- 5. Let $g_n, g \in \mathcal{S}(\mathbb{R})$. We say $g_n \xrightarrow{s} g$, if for every $k \ge 0, l \ge 0$, $(1+x^2)^l D^k g_n \to (1+x^2)^l D^k g$ uniformly on \mathbb{R} . Decide if the following is true or not:

$$g_n \xrightarrow{s} g \Rightarrow (1+x^2)^{25} g_n \xrightarrow{L^p} (1+x^2)^{25} g, \text{ where } 1 \le p < \infty.$$

If true give a proof; if false give a counter example.

6. If $f \in \mathcal{S}(\mathbb{R})$ and $g \in C_c^{\infty}(\mathbb{R})$ and $f * g \equiv 0$, does it necessarily mean that $f \equiv 0$ or $g \equiv 0$? Justify your answer. [15]

7. Let $1 \leq p < \infty$ and $f \in C^2$ -function in $L^p(\mathbb{R}^n)$. If Δ is the Laplacian on \mathbb{R}^n , prove using facts about distributions of Fourier transforms that

$$\Delta f \equiv 0 \Rightarrow f \equiv 0.$$

(i.e. there are no non-trivial L^p harmonic functions if $1 \le p < \infty$.)

[15]

8. Let $f(x) = e^{-|x|}$. Prove that f is an L¹-function and that

$$\overline{\operatorname{Sp}\{^{x}f: x \in \mathbb{R}\}} = L^{1}(\mathbb{R}^{n}).$$
[15]